science

Une nouvelle méthode d’apprentissage automatique améliore notre compréhension de l’identité cellulaire

Illustration de cellules humaines

L’identité cellulaire fait référence aux propriétés et caractéristiques uniques qui distinguent un type de cellule d’un autre au sein d’un organisme. Cette identité est déterminée par l’expression de certains gènes, qui contrôlent la production de protéines qui confèrent aux cellules leurs fonctions et structures particulières.

L’activation et l’expression des gènes révèlent des similitudes dans les modèles cellulaires en fonction du type et de la fonction dans tous les tissus et organes. La compréhension de ces modèles améliore notre compréhension des cellules et offre un aperçu des mécanismes révélateurs des maladies sous-jacentes.

L’avènement des techniques de transcription spatiale a permis aux scientifiques d’examiner l’expression des gènes dans le contexte d’échantillons de tissus dans leur ensemble. Cependant, de nouvelles techniques informatiques sont nécessaires pour traiter ces informations et faciliter l’identification et la compréhension de ces modèles d’expression génique.

Une équipe de recherche dirigée par Jian Ma, Rye Professor of Computational Biology et Stephanie Lin à la School of Computer Science de l’Université Carnegie Mellon, a développé[{ » attribute= » »>machine learning tool to fill this gap. Their paper on the method, called SPICEMIX, recently appeared as the cover story of Nature Genetics.

SPICEMIX helps researchers untangle the role different spatial patterns play in the overall gene expression of cells in complex tissues like the brain. It does so by representing each pattern with spatial metagenes — groups of genes that may be connected to a specific biological process and can display smooth or sporadic patterns across tissue.

The team, which included Ma; Benjamin Chidester, a project scientist in the Computational Biology Department; and Ph.D. students Tianming Zhou and Shahul Alam, used SPICEMIX to analyze spatial transcriptomics data from brain regions in mice and humans. They leveraged the unique capabilities of SPICEMIX to uncover the landscape of the brain’s cell types and spatial patterns.

“We were inspired by cooking when we chose the name,” Chidester said. “You can make all sorts of different flavors with the same set of spices. Cells may work in a similar way. They may use a common set of biological processes, but the specific combination they use gives them their unique identity.”

When applied to brain tissues, SPICEMIX identified spatial patterns of cell types in the brain more accurately than other methods. It also uncovered new expression patterns of brain cell types through the learned spatial metagenes.

“These findings may help us paint a more complete picture of the complexity of brain cell types,” Zhou said.

The number of studies using spatial transcriptomics technologies is growing rapidly, and SPICEMIX can help researchers make the most of this high-volume, high-dimensional data.

“Our method has the potential to advance spatial transcriptomics research and contribute to a deeper understanding of both basic biology and disease progression in complex tissues,” Ma said.

Reference: “SpiceMix enables integrative single-cell spatial modeling of cell identity” by Benjamin Chidester, Tianming Zhou, Shahul Alam, and Jian Ma, 9 January 2023, Nature Genetics.
DOI: 10.1038/s41588-022-01256-z

Delphine Perrault

"Solutionneur de problèmes extrêmes. Chercheur avide de bacon. Écrivain maléfique. Geek du Web. Défenseur des zombies depuis toujours."

Articles similaires

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Bouton retour en haut de la page
Fermer
Fermer